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Box 1. What is simulation?

Winsberg identifies three views of simulation modeling: (i) it is used

to solve analytic equations computationally; (ii) it is a new science;

and (iii) it is used to capture and mimic real-world systems that,

unlike real-world systems, can then be experimented upon [33].

These views are not mutually exclusive, but each gives insight into

how simulations can be used.

Solving analytical equations and exploring statistical

properties
The first view considers simulation to be a tool for using

computational methods to solve complex sets of analytic equations;

for example, when a system of differential equations is solved with

numerical approximations using a computer. This approach is also

used frequently within the field of statistics, in which Monte Carlo

simulations are used to explore distributional properties of statistical

models and formulations; for example, this type of simulation is

used in phylogenetic tree reconstruction [38]. The distinguishing

characteristic of this view of simulation is that it is used to explore

analytic mathematical models or formal statistical models.

A new science
The second view looks at simulation as a new type of science that

stands somewhere between experimental methods and purely

theoretical analytic models. This view is typified by Wolfram, who

calls cellular automata (a type of simulation modeling) a new kind of

science [2]. In this view, simulation is worthy of study in its own

right, where new methods must be developed and new ways of

looking at models must be considered.

Capture and mimic real-world systems
In the third view, simulations are an attempt to mimic a real-world

empirical system. In this view, simulation is seen as the creation of a

possible world that is constructed in silico [39] using computer

programs to represent the processes under consideration. These

models seek to represent formally relevant aspects of the real

system under investigation (e.g. the flow of energy through trophic

levels, the effect of spatial substructuring on population genetics,

etc.). This type of modeling has become the sine qua non for

understanding complex systems and has been used successfully in

developmental biology [3], astrophysics [40], physics [41], geomor-

phology [42], meteorology [43] and a host of other disciplines,

including evolution and ecology. Agent-based models, in which

individuals interact dynamically with each other as structural

elements in the model world, exemplify this view of simulation

modeling [30,44]. These types of simulation should be viewed as

another kind of experimental system. The same sorts of experiment

andmanipulation that might be done in a real system are done using

a computer, with the difference being that these experimental

systems can be manipulated with ease in a way that real systems

cannot.
Some scientific modelers suggest that complex simu-

lation models that mimic biological processes should

have a limited place in ecological and evolutionary

studies. However, complex simulation models can have

a role that is different from that of simpler models that

are designed to be fit to data. Simulation can be viewed

as another kind of experimental system and should be

analyzed as such. Here, I argue that current discussions

in the philosophy of science and in the physical sciences

fields about the use of simulation as an experimental

system have important implications for biology,

especially complex sciences such as evolution and

ecology. Simulation models can be used to mimic

complex systems, but unlike nature, can bemanipulated

in ways that would be impossible, too costly or

unethical to do in natural systems. Simulation can add

to theory development and testing, can offer hypotheses

about the way the world works and can give guidance

as to which data are most important to gather

experimentally.

Simulation modeling has become vital for studying a
range of complex systems, from sociology to the hard
physical sciences, such as physics, astronomy and meteor-
ology. Simulation modeling is enabled by recent advances
in computer technology and has been applied in several
different ways (Box 1). Here, I focus on complex computer
simulations that are designed to mimic biological pro-
cesses by creating a ‘computer-world’ to represent those
processes. I argue that this kind of simulation modeling is
the most effective way to study complex biological systems
when simple models cannot capture the necessary com-
plexity, and experiments are impossible owing to logistic,
ethical or budget constraints.

Simulation has attracted the attention of philosophers
and practitioners of science [1–3]. However, ironically, its
utility is debated [3–9] and some ecologists and evolution-
ary biologists view it with suspicion and even contempt.
For example, Oreskes et al. complain that numerical
models are often misinterpreted and that attempts to
verify, validate and confirm them are problematic [10].
Gavrilets condemns simulation modeling as being too
specific, difficult to parameterize, difficult to draw
Opinion TRENDS in Ecology and Evolution Vol.19 No.10 October 2004
Corresponding author: Steven L. Peck (steven_peck@byu.edu).
Available online 13 August 2004

www.sciencedirect.com 0169-5347/$ - see front matter Q 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tree.2004.07.019

http://www.sciencedirect.com


Opinion TRENDS in Ecology and Evolution Vol.19 No.10 October 2004 531
generalizations from, open to wide interpretation and
difficult to reproduce [11]. Barryman finds them too
expensive to build, too complex to understand, and filled
with redundancies [4]. Yet, in spite of these concerns,
simulation can play an important role in furthering our
understanding of complex sciences such as ecology and
evolutionary biology.

What are the legitimate uses for simulations models?
Philosophers and practitioners of science are recognizing
that simulation models are a new kind of tool that defies
the categories, uses and restrictions found in the historical
uses of mathematical models [3,12–14]. Entire disciplines
are being structured around simulation modeling (e.g.
artificial life, in which digital ‘creatures’ are allowed to
compete, reproduce and evolve in an computer ‘environ-
environment’ [15,16]). A shortcoming in the views
expressed by those concerned about using complex
simulation models is that they often bundle three
activities (data collection, statistical analysis and math-
ematical modeling) and only allow each of these activities
to support the others (i.e. models are only valuable in light
of data and their subsequent analysis). Are such concerns
legitimate? To view simulation and its uses more aptly, we
must first understand the philosophy behind current uses
of modeling and place simulation models in that context. I
approach this by looking at how models are used to
represent reality, and then by discussing two programs of
model building (models used to describe and those used to
explain) I then explore the place of simulation in this
context as a type of experimental system.

Models: representing reality

Models can be used to represent some aspect of the world,
some aspect of our theories about the world, or both
simultaneously. Hence, the representative power of a
model lies in its ability to teach us something about the
thing it represents. Models then mediate between the real
world and our theories and suppositions about that world
[14]. By understanding and manipulating the model,
researchers hope to gain some sense of the way in which
the world works. Models are a formalization of theory (i.e.
models are theories) and I use the two terms interchange-
ably throughout this article [17,18].

Two broad programs in biological model building are
often confused and conflated, in part because they are
conflated. Ginzburg and Jensen characterize the differ-
ence between these programs as models that describe
versus those that explain [17]. Much of the confusion
about the role of simulation results from these two
programs not being clearly recognized.

In the first program, statistical models are used to
make predictions or find functional relationships
among variables. In these models, data are used to
fit the parameters used in the model [19]. Usually with
these models, the fit is achieved through maximum
likelihood, least squares, time-series analyses, or other
methods of parameter fitting. In these types of model,
it is not the causal story that is being modeled, but
rather statistical relationships that are thought to hold
among the individual components of the biological
system. For example, in Hubble’s unified neutral
www.sciencedirect.com
theory of biodiversity and biogeography, the predictive
ability of the model is very high even though there is
no clear causal explanation for why the statistical
models proposed should hold [20,21].

In the second program, models are used to offer an
explanation of biological phenomena [17,22]. In these
types of model, the terms used mean something specific
about the biology of the system. The model offers a theory
about how the components of the system (be they biotic or
abiotic) work causally together to produce a given out-
come. These models can also be manipulated to make
predictions by using biological data to fit model parameter
values via the same techniques previously suggested:
maximum likelihood, least squares, and so on [23].
Parsimony techniques can then be used to refine these
predictions to find the best fit to the data [17,24]
(Examples of these kinds of model illustrating how they
are used within these programs are given in Box 2). In
addition to prediction, these models can be used to test
how well a particular theory, expressed as a model, fits the
data, which gives an indication of how well the theory
might describe underlying biological processes. Therefore,
it is possible to test specific theoretical ideas about how the
world works.

Models can be used as tools to gain a deeper under-
standing about the biological processes that are being
explored. Cooper provides three ways in which models can
be considered as tools [18]. First, he points out that models
are always simplifications of real-world systems. Second,
he notes that another use of theories is that, rather than
seeing a particular model as providing corroborating
evidence for a particular causal story, the model con-
strains the set of possibilities. In this view, modeling limits
the search space of competing hypotheses being used to
explain a particular data set. Third, Cooper highlights the
fact that theories can be used as a framework to structure
empirical investigations. Theory can guide which data to
gather and will help inform researchers about which
experiments to conduct. Examples of this can be seen in
metapopulation dynamic theory [25], island biogeography
[26] and Fisher’s fundamental theorem in genetics [27]. In
these examples, theory is used to determine which
variables are likely to provide the most insight into the
question being asked.

Briefly, models have legitimate uses other than fitting
parameter values to the models from data. Perhaps one of
the best-known examples is the Lotka–Volterra model in
ecology. Although it has been demonstrated that few, if
any, data sets fit it [28], it has provided a rich framework
for further theoretical and empirical work about predator–
prey interactions.

Within the framework of this second program, where
models are seen as theoretical tools for understanding the
world, where does simulation fit?

Model complexity: what is at stake?

Model building plays itself out with at least two competing
goals: (i) fidelity to actual biological structure; and (ii) the
need to simplify the system to represent it as a model, that
is, the level of abstraction [18]. The complexity of
ecological and evolutionary systems is profound. In
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Box 2. Examples of model types

There are two modeling programs in ecological and evolutionary

modeling. The first uses statistical models to fit data gathered in field

studies and designed experiments to understand the statistical

relationships found among several variables. In the second pro-

gram, model variables are designed to be a causal explanation of

system behavior. Models within this second program can be used to

confront data in a similar manner to those from the first program

[17,23]; however, complex simulations of this type must be

viewed as another type of experimental system to exploit the

gains that come from these computer models.

Statistical predictive models
To predict the emergence of pink bollworm Pectinophora gossy-

piella, Carrière et al. used a least squares regression (Eqn I, [45]):

Y ¼ b þ a1x þ a2x
2 þ a3x

2 þ 3 (Eqn I)

where x is a combined measure of time and temperature and Y is the

cumulative emergence. The variables a1, a2 and a3 are the

parameters to be fit and 3 is the error term. When fit to the data,

the model returned an R2Z0.94, indicating a good fit. These types of

model can be more sophisticated and can include time dimensions

that use methods from time-series analysis. There are no causal

mechanisms that explain the possible biological relationships in this

model.

Phenomenological models: two extremes
Alstad and Andow developed a deterministic model of the develop-

ment of insect resistance to transgenic crops with p proportion of

resistant genes and w the proportion of susceptible genes (Eqn II):

dp

dt
¼

ð1KrÞpX þ
srpX

s þG
þ

srwY

s þG
dX

dt

2
64

3
75

(Eqn II)
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Z
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sCG
C

GrpX

sCG
dY

dt

2
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75

where r is the proportion of the population that moves from the site

in which it was born; and s is a preference factor; G is a factor that

gives the proportional size of toxic to non-toxic regions. Similar

equations for the X and Y (the adult densities per unity area) were

included in the original paper [46]. This model follows the resistant

and susceptible alleles through time, and provides a biological

explanation of how resistance develops. The model is tractable and

data could be used to fit model behavior. Because the model is a

differential equation, well defined techniques can be used to study

the behavior of this model.

Complex simulation model
Storer et al. built a spatially explicit model written in the computer

language CCC exploring the evolution of resistance in corn ear-

worm Helicoverpa zea to transgenic corn. The model had 15

parameters, including population dynamics, genetics and several

management variables. This model requires an experimental

approach to explore the details and implications of this high

dimensional model [47,48].

Opinion TRENDS in Ecology and Evolution Vol.19 No.10 October 2004532
addition, there might be no general laws to be found in
such systems [18,22] and local conditions might dominate
[29–31]. To explore this complexity using theoretical
modeling tools, choices must be made about what to
include in the model. Deciding how much biological detail
to add, and how much abstraction to accept, involves
tradeoffs. For example, analytical models, such as a set of
differential equations, include tools that have been
developed over the past two centuries that make these
models much more tractable, interpretable and
www.sciencedirect.com
understandable. However, the complexity that these
models can handle is comparatively limited. Simple
models are unlikely to capture the complexity that is
inherent in real-world systems, where, as Cartwright
suggests, local influences dominate [32]. This is especially
true in biological systems, where ecological, genetic and
evolutionary history can be tangled in a complex web of
spatial and temporal interaction, causation and stochas-
ticity. However, simulation models can handle almost
unlimited complexity, but are hard to understand and
explore, in some cases almost reaching the complexity of
nature itself. Are there ways to handle this level of model
complexity? Why is it important that we do so?
Simulation as experiment

The world is complex and we need all the tools that we can
muster to understand it. Researchers across many
disciplines are realizing that simulation models are a
new kind of experimental system [1,3,13,33]. Simulations
are becoming increasingly important in the physical
sciences, including physics, astronomy, geology and
meteorology. The use of simulation in these disciplines
falls somewhere between traditional modeling formu-
lations and experimental systems [1] (All of these sciences
are more explanatory than predictive, a feature of many of
the questions asked in evolution and ecology).

Simulation models are properly explored using the
same experimental and statistical techniques that are
used to explore real-world systems. As Winsberg notes, ‘If
simulationists want to learn about the general qualitative
features of a class of systems, then they must apply all the
usual tools of experimental science for analysing data:
visualization, statistics, data mining, etc. If they want to
discover functional dependencies, then they must also run
a barrage of trials, looking at the results across a wide
range of parameters. It is without a doubt this aspect of
simulation that carries the most obvious methodological
characteristics of experimental work’ [33].

Simulations are experimental systems. Their complex-
ity can make them closer cousins in complexity to nature
itself than to simple analytic models, but with a powerful
advantage over the real world: the modeler has complete
control of the system. Thus, the advantage that simulation
gives to scientific exploration is that the model system is
strongly manipulable. If one has a good representation of a
system, then one has created a world over which one has
complete control. It enables experimentation that would
be impossible, too costly, too time consuming, or unethical
to do with a real system. Simulation models have proven
particularly important in understanding spatial and
stochastic dynamics in evolutionary and ecological sys-
tems, where simple models cannot capture the complexity
of these high dimensional systems [34,35]. The insight
that simulations are another kind of experimental system
is an important restructuring of simulation modeling
philosophy. Similar to simple mathematical models,
simulations are theoretical constructs created to under-
stand real systems. However, to interpret them requires
that they are treated more like experimental systems,
unlike simple analytic models, for which the functional
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relationships among model components can be read off the
equations themselves [33].

Simulation modelers have been instinctively looking at
simulation as experimental systems ever since the ‘dawn’
of computers during the 1950s, analyzing their data using
techniques borrowed from statistical experimental design.
However, many of their efforts have gone into making the
square peg of simulation fit into the round hole of analytic
modeling with limited success; hence, the criticisms of
these kinds of model when simulation is compared with
analytical modeling. Adopting the stance of simulation as
experiment, currently being championed by philosophers
and practitioners of science in the physical sciences, will
help clarify the role that simulations can play in advan-
cing ecology and evolutionary biology.

Building useful simulations

When a researcher builds a simulation model, they have
created a world in which they have access to all of the laws
and components of that world, and the relationships
among those components. Not only do researchers have
access to these things, but they can also manipulate them.
To the extent that researchers can match their simulated
world to the real world, they should be able to read things
off the simulated world that will tell them something
about the real world. But, how is that done? As Winsberg
notes, ‘Making the simulation work, and making it
produce results that the simulationist is willing to
sanction as reliable, is a skill that has been developed in
a lengthy period of trial, error and comparison with both
theory and known results from physical experiments. In
sum, by the semiautonomy of a simulation model, one
refers to the fact it starts from theory but one modifies it
with extensive approximations, idealizations, falsifica-
tions, auxiliary information, and the blood, sweat and
tears of much trial and error’ [33].

Building a proper simulation model usually requires
three steps: (i) certifying that the model is an accurate
representation of the biological phenomenon under con-
sideration; (ii) handling the high dimensionality of the
parameter space; and (iii) conducting uncertainty and
sensitivity analyses to understand how the parameters
influence model behavior [36,37]. Surprisingly, there is
nothing here about fitting the model to data. Sometimes,
this can be done, but often it cannot. This is not to say that
data are not used for this type of complex simulation
modeling. Data are included from previous studies to
construct the model itself. The kinds of experiment done
with the simulation model give insight into future data-
gathering efforts, test hypotheses that would be imposs-
ible to test otherwise and inform researchers about the
implications of theoretical insights contained in the causal
story that the model represents. Simulation is another
experimental system with which to explore theories about
how the real world works, using an artificial world that
researchers can control. The simulation can point to areas
for which more data are needed. It offers hypotheses for
testing with simpler models and points to management
options that might be reached in no other way. In short, it
shows what the world would look like, if it really did work
the way in which we think it does.
www.sciencedirect.com
I am not advocating that we add things into the model
that are unnecessary and that the model be a complex one
just because it can be simulated. When an analytic model
can be used, it should be used. They are simpler, clearer and
usually can be fit to data to make their interpretation much
easier. However, some processes are inescapably complex.
This is the domain of the complex simulation model.

Recognizing that simulation models are another kind of
experimental systems helps place their use in a new
context. They are an important addition to the methods of
science and their proper use can help researchers
investigate the world in new ways by providing a method
with which to explore ideas in ecology and evolution that
would be impossible otherwise.
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