Chapter 7: Figures

Figure-7-1a Figure-7-1bFigure 7.1: A Traditional Planar Graph-Street Network and a Space Syntax Representation

Figure-7-2row1-1   Figure-7-2row1-2   Figure-7-2row1-3

Figure-7-2row2-1   Figure-7-2row2-2   Figure-7-2row2-3

Figure 7.2: Dual and Primal Networks for the Two Map Problems

Figure-7-3

Figure 7.3: Axial Lines and Junctions in the Regent Street Area of Central London

Figure-7-4row1-col1-color  Figure-7-4row1-colr2-color Figure-7-4row2-col1-color  Figure-7-4row2-col2-colorFigure 7.4: Primal (a), (b) and Dual Networks (c), (d) Embedded In and Across Euclidean Space

Fig7-5-topleft-color  Fig7-5-topright-color Fig7-5-bottomleft-color  Fig7-5-bottomright-colorFigure 7.5: Space Syntax on the Manhattan Grid: Uniform Accessibilities

Figure-7-6-a-color  Figure-7-6-b-color Figure-7-6-c-color  Figure-7-6-d-colorFigure 7.6: Space Syntax on a Fractal Tree: The Primal is the Dual

Figure-7-7-row1-col1-colorFigure-7-7-row1-col2-colorFigure-7-7-row2-col1-colorFigure-7-7-row2-col2-colorFigure-7-7-row2-col1-colorFigure-7-7-row3-col2-colorFigure 7.7: Accessibility Surfaces for the Primal and Dual Problems from the Simple Planar and Axial Maps shown in Figures 7.1(a) and 7.1(b)

Figure-7-8-a-color   Figure-7-8-b-colorFigure-7-8-c-color   Figure-7-8-d-color Figure-7-8-e-color   Figure-7-8-f-colorFigure 7.8: Key Accessibility Measures for the Primal and Dual Pure Syntax Analysis of Gassin

Figure-7-9-colorFigure 7.9: The Street Grid for Central Melbourne with the Underground Rail Loop

Figure-7-10-a-color  Figure-7-10-b-color

Figure-7-10-c-color  Figure-7-10-d-colorFigure 7.10: Line Accessibility Surfaces Based on the Out-Degrees (a), Step-Distances (b), Weighted Distances (c), and Euclidean Distances (d)

Figure-7-11-a-color  Figure-7-11-b-colorFigure-7-11-c-color  Figure-7-11-d-colorFigure 7.11: Points Accessibility Surfaces Based on the Out-Degrees (a), Step-Distances (b), Weighted Distances (c), and Euclidean Distances (d)

Figure-7-12-a-color   Figure-7-12-b-color Figure-7-12-c-color   Figure-7-12-d-colorFigure 7.12: Relative Proximities for the Primal and Dual Pure Syntax Analysis of Gassin

Figure-7-13-a-color  Figure-7-13-b-colorFigure-7-13-c-color  Figure-7-13-d-colorFigure 7.13: Relative Proximities for the Primal and Dual Analysis of Central Melbourne